Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(22): 14246-14259, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558835

RESUMO

The simultaneous presence of hazardous chemicals and pathogenic microorganisms in wastewater is tremendously endangering the environment and human health. Therefore, developing a mitigation strategy for adequately degrading toxic compounds and inactivating/killing microorganisms is urgently needed to protect ecosystems. In this paper, the synergetic effects of the photocatalytic activity of TiO2 and Cu-TiO2 nanoparticles (NPs) and the oxidation processes of non-thermal atmospheric pressure plasma (NTAPP) were comprehensively investigated for both the inactivation/killing of common water contaminating bacteria (Escherichia coli (E. coli)) and the degradation of direct textile wastewater (DTW). The photocatalytic NPs were synthesized using the hydrothermal method and further characterized employing field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS) and photoluminescence (PL). Results revealed the predominant presence of the typical anatase phase for both the flower-like TiO2 and the multipod-like Cu-TiO2 structures. UV-Vis DRS and PL analyses showed that the addition of Cu dopants reduced the bandgap and increased oxygen defect vacancies of TiO2. The inactivation of E. coli in suspension and degradation of DTW were then examined upon treating the aqueous media with various plasma alone and plasma/NPs conditions (Ar plasma, Ar + O2 plasma and Ar + N2 plasma, Ar plasma + TiO2 NPs and Ar plasma + Cu-TiO2 NPs). Primary and secondary excited species such as OH˙, O, H and N2* generated in plasma during the processes were recognized by in situ optical emission spectrometry (OES) measurements. Several other spectroscopic analyses were further employed to quantify some reactive oxygen species (ROS) such as OH, H2O2 and O3 generated during the processes. Moreover, the changes in the pH and electrical conductivity (EC) of the solutions were also assessed. The inactivation of bacteria was examined by the colony-forming unit (CFU) method after plating the treated suspensions on agar, and the degradation of organic compounds in DTW was further validated by measuring the total organic carbon (TOC) removal efficiency. All results collectively revealed that the combinatorial plasma-photocatalysis strategy involving Cu-TiO2 NPs and argon plasma jet produced higher concentrations of ROS and proved to be a promising one-step wastewater treatment effectively killing microorganisms and degrading toxic organic compounds.

2.
Environ Geochem Health ; 43(2): 649-662, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31679080

RESUMO

One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.


Assuntos
Corantes/metabolismo , Resíduos Industriais , Gases em Plasma , Indústria Têxtil , Poluentes Químicos da Água/metabolismo , Pressão Atmosférica , Corantes/toxicidade , Escherichia coli/efeitos dos fármacos , Humanos , Nitrogênio , Staphylococcus aureus/efeitos dos fármacos
3.
J Hazard Mater ; 405: 124264, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153792

RESUMO

In this paper, the photocatalytic activity of plasma-functionalized Cu-doped TiO2 nanoparticles (NPs) and the oxidization process of atmospheric pressure plasma jet were combined for the degradation of reactive red-198 (RR-198) in aqueous solution. The first part of the study was thus devoted to subject Cu-‒TiO2 NPs synthetized by the sol-gel method to various plasma treatments operating in air, argon, oxygen and nitrogen to improve their degradation efficiency. The physicochemical properties of the NPs were then assessed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. XRD results indicated the predominant presence of the anatase phase which is the most photoactive form of TiO2. The XPS analysis revealed that the different plasma treatments triggered the formation of oxygen vacancies, Ti3+ oxidation state and Cu2+ oxidation state on the surface of Cu-‒TiO2 NPs. These changes, known to prevent the recombination of electron-hole pair, have led to a reduction in the bandgap that was more pronounced for the N2 plasma-treated NPs. The second part of the paper explored the actual degradation of RR-198 in aqueous solution by an Ar plasma treatment alone or combined with the plasma pre-treated Cu-‒TiO2 NPs. Optical emission spectroscopy (OES) and spectrophotometric analyses showed that the synergetic effect of Ar plasma and N2 plasma-treated NPs produced the highest concentration of OH• radicals and H2O2 species which led to the highest RR-198 degradation efficiency. This was further confirmed by pH, electrical conductivity and total organic carbon (TOC) removal measurements. The degradation of RR-198 was determined using UV-Vis spectroscopy and high-performance liquid chromatography (HPLC). Overall, it can be concluded that plasma-assisted processes illustrated by a combination of a direct plasma treatment with plasma-functionalized Cu-‒TiO2 NPs can be used in various textile and pharmaceutical industries as a highly effective treatment of their effluents before discharging.

4.
Mater Sci Eng C Mater Biol Appl ; 94: 150-160, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423696

RESUMO

This work describes the development of antifouling functional coatings on the surface of low density polyethylene (LDPE) films by means of atmospheric pressure non-thermal plasma (APNTP) assisted copolymerization using a mixture of acrylic acid and poly (ethylene glycol). The aim of the study was to investigate the antifouling properties of the plasma copolymerized LDPE films and the same was carried out as a function of deposition time with fixed applied potential of 14 kV. In a second stage, the plasma copolymerized LDPE films were functionalized with chitosan (CHT) to further enhance its antifouling properties. The surface hydrophilicity, structural, topographical and chemistry of the plasma copolymerized LDPE films were examined by contact angle (CA), X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Coating stability was also studied in detail over a storage time of 15 days by storing in water and air. The antifouling properties of the plasma copolymerized LDPE films were examined via protein adsorption and platelet adhesion studies. CA study showed significant changes in surface wettability after the coating process. XPS and FTIR analysis proved the presence of a dense multifunctional coating and an efficient immobilization of CHT. Substantial amendments in surface topography were observed, positively enhancing the overall surface hydrophilicity. Finally, in-vitro analysis showed excellent antifouling behavior of the surface modified LDPE films.


Assuntos
Incrustação Biológica , Quitosana/farmacologia , Gases em Plasma/química , Polietileno/química , Polimerização , Adsorção , Animais , Proteínas Sanguíneas/metabolismo , Materiais Revestidos Biocompatíveis/química , Cabras , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Espectroscopia Fotoeletrônica , Adesividade Plaquetária , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Molhabilidade , Difração de Raios X
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 2): 047301, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599340

RESUMO

Colloidal particles provide an efficient means of building multiple scale structured materials from colloidal dispersions. In this Brief Report we account for experimental evidence on the formation of a colloidal cluster array at a three-phase contact line. We study the influence of low frequency external alternating electric fields on a diluted colloidal dispersion opened to the air. We focus on the cluster formation and their evolution in the meniscus by measuring characteristic times and lengths. We observe that the clusters are separated by a well-defined length and that, in our experimental conditions, they survive between 5 and 15 min. These new results could be of technological relevance in building tailored colloidal structures in nonpatterned substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...